I feel like Bishop + any non-colorbound leaper or 2-way colorbound leaper (opposite bishop's color) should be able to force mate on a board that has mating corners, but I am observing through tablebase analysis that Bishop + 6,1 leaper is generally a draw on 8x8. I was thinking that Bishop + 6,1 leaper might actually be able to force checkmate on a 16x16 instead, though I don't have the means to generate the tablebase.
My reasoning is that King + Bishop alone can prevent King from crossing a certain diagonal, and will gain tempo whenever defender's K is forced to switch directions to try to penetrate the diagonal. It seems like the leaper should always have enough tempo to control 1 of the squares on the diagonal adjacent to bishop's diagonal and closer to mating corner; then bishop can take over next smaller diagonal of its color while king and other piece control diagonal of opposite color to keep defender's K within the shrinking triangular region.
Mate with Bishop and Generalized Leaper
-
- Posts: 223
- Joined: Mon Feb 19, 2007 8:24 am
- Sign-up code: 0
- Location: Amsterdam
- Contact:
Re: Mate with Bishop and Generalized Leaper
Interesting. It seems your intuition that larger boards are better is right, at least considering the Flamingo (F'). On 8x8 and 10x10 boards KBF'.K is a general draw, but on 12x12 it is a general win:
On 10x10 this is
Code: Select all
$ ./4men
allocate 432988480 bytes at 6fa040
mated mate
King captures 66718336
mates 1800 ( 2.84 sec)
in-1 1800 8520 ( 4.15 sec)
in-2 1664 5040 ( 5.46 sec)
in-3 1720 14336 ( 6.76 sec)
in-4 12032 19280 ( 8.07 sec)
in-5 10488 68488 ( 9.39 sec)
in-6 43120 82032 (10.71 sec)
in-7 27296 195716 (12.07 sec)
in-8 45808 121128 (13.40 sec)
in-9 22632 160632 (14.76 sec)
in-10 24828 76608 (16.08 sec)
in-11 10664 72520 (17.40 sec)
in-12 11864 32844 (18.71 sec)
in-13 24796 63112 (20.03 sec)
in-14 56972 117576 (21.36 sec)
in-15 83832 215692 (22.73 sec)
in-16 108080 281184 (24.12 sec)
in-17 118304 320696 (25.53 sec)
in-18 139140 352688 (26.94 sec)
in-19 145460 393956 (28.38 sec)
in-20 156656 409416 (29.82 sec)
in-21 115788 378880 (31.25 sec)
in-22 54844 250252 (32.65 sec)
in-23 24808 109484 (33.99 sec)
in-24 35060 66664 (35.31 sec)
in-25 20056 72488 (36.64 sec)
in-26 38808 67024 (37.96 sec)
in-27 69892 119716 (39.30 sec)
in-28 103728 204696 (40.67 sec)
in-29 154244 299920 (42.07 sec)
in-30 214772 450144 (43.52 sec)
in-31 275768 560332 (45.01 sec)
in-32 332472 654316 (46.54 sec)
in-33 412524 759660 (48.11 sec)
in-34 422640 871088 (49.74 sec)
in-35 419268 854768 (51.36 sec)
in-36 370764 835380 (52.98 sec)
in-37 295224 697276 (54.55 sec)
in-38 285116 580332 (56.08 sec)
in-39 255320 533076 (57.59 sec)
in-40 182572 457764 (59.06 sec)
in-41 122512 310632 (60.49 sec)
in-42 53236 197552 (61.88 sec)
in-43 39136 108644 (63.22 sec)
in-44 38880 100968 (64.55 sec)
in-45 44880 112896 (65.89 sec)
in-46 56696 125656 (67.24 sec)
in-47 60000 144936 (68.59 sec)
in-48 86200 163296 (69.95 sec)
in-49 97280 198080 (71.33 sec)
in-50 116016 231796 (72.73 sec)
in-51 114764 260392 (74.13 sec)
in-52 136636 284156 (75.54 sec)
in-53 176112 324860 (76.96 sec)
in-54 261488 420132 (78.42 sec)
in-55 408396 591648 (79.95 sec)
in-56 566184 822320 (81.55 sec)
in-57 824648 1100112 (83.27 sec)
in-58 985228 1499436 (85.12 sec)
in-59 1049008 1796704 (87.07 sec)
in-60 1089844 1860396 (89.05 sec)
in-61 1000940 1816552 (91.04 sec)
in-62 877356 1663728 (92.96 sec)
in-63 745972 1465668 (94.81 sec)
in-64 633584 1228636 (96.58 sec)
in-65 511720 973192 (98.26 sec)
in-66 340872 749756 (99.86 sec)
in-67 197068 491860 (101.35 sec)
in-68 116116 312280 (102.78 sec)
in-69 111624 228052 (104.17 sec)
in-70 112928 264424 (105.57 sec)
in-71 169832 327144 (106.99 sec)
in-72 281656 523728 (108.47 sec)
in-73 429824 759584 (110.06 sec)
in-74 592120 1067544 (111.76 sec)
in-75 864604 1352208 (113.58 sec)
in-76 1147408 1857532 (115.59 sec)
in-77 1531928 2293384 (117.78 sec)
in-78 1967300 2897672 (120.19 sec)
in-79 2521824 3509748 (122.85 sec)
in-80 3022492 4301368 (125.80 sec)
in-81 3595588 4932504 (128.98 sec)
in-82 4405216 5728152 (132.46 sec)
in-83 5185560 6697052 (136.37 sec)
in-84 6352032 7729480 (140.56 sec)
in-85 7881536 9180628 (145.41 sec)
in-86 10052024 11304988 (151.03 sec)
in-87 13000460 13966072 (157.58 sec)
in-88 16853144 17637144 (165.52 sec)
in-89 21964132 22291916 (174.98 sec)
in-90 28125240 28073228 (186.44 sec)
in-91 35946376 33696612 (200.45 sec)
in-92 42453124 36990616 (216.44 sec)
in-93 43862780 35346232 (233.35 sec)
in-94 38033328 28489768 (249.89 sec)
in-95 26888032 18404060 (263.04 sec)
in-96 14982080 9402984 (271.91 sec)
in-97 6305368 3659908 (277.05 sec)
in-98 1889044 1013520 (279.90 sec)
in-99 338736 173316 (281.64 sec)
in-100 25040 13464 (283.02 sec)
in-101 288 136 (284.32 sec)
in-102 0 0 (285.61 sec)
won: 412023512 ( 99.9%)
lost: 356776064 ( 86.5%)
avg: -1.5 moves
Code: Select all
$ ./4men
allocate 101010064 bytes at 683040
mated mate
King captures 18521528
mates 1320 ( 0.82 sec)
in-1 1168 5048 ( 1.13 sec)
in-2 1104 3096 ( 1.43 sec)
in-3 1184 8760 ( 1.73 sec)
in-4 6696 11632 ( 2.04 sec)
in-5 5872 34000 ( 2.35 sec)
in-6 19648 39488 ( 2.66 sec)
in-7 14904 82428 ( 2.98 sec)
in-8 22240 59624 ( 3.30 sec)
in-9 12024 76484 ( 3.63 sec)
in-10 14268 41632 ( 3.94 sec)
in-11 6672 43972 ( 4.26 sec)
in-12 8280 21492 ( 4.57 sec)
in-13 15836 40624 ( 4.88 sec)
in-14 36508 68664 ( 5.21 sec)
in-15 51500 125456 ( 5.55 sec)
in-16 57436 153564 ( 5.90 sec)
in-17 55500 151216 ( 6.25 sec)
in-18 63020 154688 ( 6.60 sec)
in-19 54568 159784 ( 6.95 sec)
in-20 60692 147916 ( 7.30 sec)
in-21 42344 142148 ( 7.65 sec)
in-22 26592 95432 ( 7.98 sec)
in-23 10360 51544 ( 8.31 sec)
in-24 5000 19144 ( 8.62 sec)
in-25 1152 9472 ( 8.92 sec)
in-26 120 2928 ( 9.22 sec)
in-27 0 152 ( 9.53 sec)
won: 20271916 ( 21.5%)
lost: 596008 ( 0.6%)
avg: 15.9 moves